Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties.

نویسندگان

  • Kenneth R Tovar
  • Brady J Maher
  • Gary L Westbrook
چکیده

The increased appreciation of electrical coupling between neurons has led to many studies examining the role of gap junctions in synaptic and network activity. Although the gap junctional blocker carbenoxolone (CBX) is effective in reducing electrical coupling, it may have other actions as well. To study the non-gap junctional effects of CBX on synaptic transmission, we recorded from mouse hippocampal neurons cultured on glial micro-islands. This recording configuration allowed us to stimulate and record excitatory postsynaptic currents (EPSCs) or inhibitory postsynaptic currents (IPSCs) in the same neuron or pairs of neurons. CBX irreversibly reduced evoked alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptor-mediated EPSCs. Consistent with a presynaptic site of action, CBX had no effect on glutamate-evoked whole cell currents and increased the paired-pulse ratio of AMPA and N-methyl-d-aspartate (NMDA) receptor-mediated EPSCs. CBX also reversibly reduced GABA(A) receptor-mediated IPSCs, increased the action potential width, and reduced the action potential firing rate. Our results indicate CBX broadly affects several neuronal membrane conductances independent of its effects on gap junctions. Thus effects of carbenoxolone on network activity cannot be interpreted as resulting from specific block of gap junctions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties 1

Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties 1 2 Kenneth R. Tovar, Brady J. Maher and Gary L. Westbrook 3 Vollum Institute 4 Oregon Health and Science University 5 Portland, Oregon 97239 6 7 8 Correspondence: 9 Kenneth R. Tovar 10 Vollum Institute, L474 11 Oregon Health and Science University 12 3181 SW Sam Jackson Park Road 13 [email protected] 14 15 ...

متن کامل

Carbenoxolone inhibition of voltage-gated Ca channels and synaptic transmission in the retina.

We show that carbenoxolone, a drug used to block hemichannels in the retina to test the ephaptic model of horizontal cell inhibitory feedback, has strong inhibitory effects on voltage-gated Ca channels. Carbenoxolone (100 microM) reduced photoreceptor-to-horizontal cell synaptic transmission by 92%. Applied to patch-clamped, isolated cone photoreceptors, carbenoxolone inhibited Ca channels with...

متن کامل

3. Actions of Ethanol on Neuronal Membrane Properties and Synaptic Transmission*

Numerous investigations have revealed effects of ethanol on both neuronal excitability and synaptic transmission (cf., 1 for review). Since these studies have utilized a variety of invertebrate and vertebrate model systems and the concentrations employed have often been beyond those associated with moderate intoxication or ataxia, it is not surprising that a myriad of actions have been describe...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 102 2  شماره 

صفحات  -

تاریخ انتشار 2009